Perfect Shuffles

Number the locations in a deck by how many cards are above them:

0 1 2 3 4 5 ... n

In one perfect shuffle a card at location \(x \) in a deck of \(n \) cards is moved to location \(2x \mod n \).

It is fairly easy to convince yourself of this. Cards in the top half of the deck are easy. If \(x \) cards are above them, \(x \) more are inserted above them when we do a shuffle.

So if we do \(k \) shuffles cards starting at location \(x \) end

at location \(2^k x \mod n \).

If \(2^m - 1 \mod n \) then \(m \) perfect shuffles returns a deck of \(n \) cards to their original arrangement.

It can happen that there is an exponent on \(x \) like numbers \(x \) and \(y \) so that \(2^x \equiv x, 2^y \equiv y \mod n \),

but \(2^m \equiv 1 \mod n \).

Still, we can answer the "how many shuffles to \(n \) cards" question by finding the smallest positive number \(m \) so that \(2^m \equiv 1 \mod n \).

Example: repeated doubling modulo 51

1, 2, 4, 8, 16, 32, 64 \equiv 13, 26, 52 \equiv 1

shows \(2^5 \equiv 1 \mod 51 \), so

a perfect deck of a standard deck returns it to its original order.