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Abstract

We will examine visualization and symmetry in a very genaray by means
of a set of problems. Many topics in mathematics can be maad learer when
symmetric aspects are made clear or when nice alternasuahlzations are pos-
sible. When this occurs, it helps both the student and theheza

There is a large amount of potential classroom material, lsaré almost any
small part of it could be used for an entire class session.

1 Introduction to Visualization

All of us (including both our students and ourselves) thiifkedently. Some of our
brains work well manipulating symbols (algebraic compota, for example) and oth-
ers of us are better at imagining and mentally manipulatiragpes and diagrams (we’'ll
call this geometric manipulation). Often problems can bmwad both algebraically
and geometrically, and can be attacked using both methods.

We will use the term “visualization” here in a very generaywBasically, the idea is
to try to find different ways to think about each problem siaaeh different view gives
us more understanding. The more different ways you haveosdmg at a problem, the
better you will understand it.

Note: Some of the exercises below are marked with one or two alster(s) or (**).
These indicate problems that may be more difficult or mucherddficult, respectively,
than the others. Of course these are totally subjectiverm&tations by the author;
different people have different talents.

This article is still a work in progress, and not all the smnos are complete. Any
problem that has a solution here will include a number, li8elution: Item 5”. This
means that item number 5 in Section 5 is a solution (or at kehstt) for that problem.

2 Visualization of Algebraic Manipulation Rules

As a first example, we will try to come up with a set of ways thatents can think
about algebraic concepts in a way that makes them not justod semewhat arbitrary



rules, but as sensible ideas that are “obviously” true. &@kerothing special about the
examples below, except that whenever we present a new toplass, it's good to try
to think of ways that the new concept is “natural”, based oawthe students already
know.

1. The distributive law. Rather than just the sterile formula that states that given
any three real numbers, B andC that:

A(B+C) = AB + AC

why not approach it this way:

“The parentheses group things together. Suppose we'rkitigimmbout a bunch
of married couples, each of which consists of a man and a wamndnve could
write an ‘equation’ that looks something like this:

couple = (man + woman).

The parentheses indicate that the man and woman are groogettheér. \What
would8 such married couples look like? Well, it would ®eopies of that group:

8 couples = 8(man + woman).

But isn'tit obvious that this would amount &men and3 women? We're making
8 copies of the group, so that would Bef everything in the group.”

Next you could look at something slightly more complex, Igacks that consist
of 5 baseball cards and one piece of chewing gum. What wdolthose packs
look like? Well:

3 packs = 3(5 cards + 1 gum).

It should be clear what the resulting collection consistsnaimely,3 - 5 = 15
baseball cards aritl- 1 = 3 pieces of gum.

2. The commutative laws for addition and multiplication. This can probably be
done with pictures that look something like these:

7T4+3 | eoocoeeee 000

3+7 | ee0o} 0000000

5-3




If we only talk about addition and multiplication, studentay think, "Why even
mention the commutative law? It's obvious.” So look at sorperations that are
not commutative, like subtraction and division. What aboutangntiation?

. Associative laws. By looking at the combination of dots as in the examples
above, the associative laws or addition and multiplicattan be made clear.
This is very easy for additon:

(24+3)+4=2+(3+4)
is equivalent to:

(oo—|—ooo)+oooo:oo+(ooo+oooo).

For multiplication, the product of three numbers can be eiéwas 3D blocks of
“dots”. If we agree that x b x c refers to a block of widtl, lengthb and height

¢, then the two groupings that the distributive law declacebd the same just
amount to slicing the block in different orders. The samaltotumber of dots
remains the same.

As we did with the commutative law, it's a good idea to look aamples of
operations that araot associative. Again, subtraction and division are good
examples. What about exponentiation?

. Combining like terms. When asked to take an expression and “simplify” it, the
following expression:

22y + 3zy® + 2 + 2xy° + 32
is probably a far more frightening example than:
2 dogs + 3 cats + 1bird + 2 cats + 3 birds.

If we think of “xy” as “dog”, “zy>” as “cat” and so on, the two “expressions”
above are equivalent.

For students who may try to combine terms like and4xy since they share
anzx, you may be able to show them why this won’t work because itkhbe
obvious that there’s no way to combifédogs” with 4 “doghouses”: the terms
have to be identical before you can sum the constants.

. (*) Nice examples for the use of the commutative and distive laws and com-
bination of like terms can be sought in ordinary arithmetfcthe students re-
member how to add and multiply, these operations can be ssedaanples. If
they’re rusty, maybe the laws can help remember the opesatio

Tx368=7x%x(3x100+6x10+8)...

Similarly, addition is combining like terms, then carryiisgegrouping.



6. (*) Possible idea: could polynomial multiplication (ime variable) be made
clear in terms of standard multiplication? For example,éfagree that = 10,
then the following are equivalent:

123 x 456 = (22 + 2z + 3)(42® + 52 + 6).

The only problem here is that polynomial multiplication dething about car-
rying. In a sense, it's a shame that carrying makes ordingttynaetic multipli-
cation more difficult than polynomial multiplication.

7. Can we come up with others?

3 More Visualization Exercises

Mathematics uses both the (symbol-manipulating) leftrbeaid the (visual, geomet-
ric) right brain. Both are important, although the emphaseslementary mathematics
courses is generally on “left-brained” activity. Followiare some exercises in visual-
ization, some general, and some specifically aimed at pmublelated to elementary
algebra.

What we will do in this section is look at “translations” ofgabraic problems into
possibly more easily-visualized geometric problems.

3.1 Adding Series of Numbers

1. Summing the basic series. We will work out this first examipldetail. Follow-
ing are more examples that can be approached in a similarenann

As an example, suppose we need to find the sum:

1+2+3+...+100.

Let's look at a simpler example which, when solved visuallji make it obvi-
ous how to sum the series above. Let’s add the following seigually:

1+24+3+...4+10.
If we use ‘e” to represent a unit, theh= e, 2 = ee, 3 = e @ o, et cetera. Deter-
mining the sum from to 10 is equivalent to counting the dots in the following
pattern:




10.

11.

12.

Just draw the same number of dots, but upside-down, and \aadbé following
picture:

It's easy to count the dots in the pattern above: therd @rews of11 dots, for
atotal of10 x 11 = 110. This is twice as many as we want, however, so there
are110/2 = 55 dots in the original triangular pattern.

. Find the sum + 2 + - - - + n, wheren is an arbitrary positive integer.

Solution: Item 1

. Findthe sum +3+5-+---+1001. In other words, sum the odd numbers from

1to1001.
Solution: Item 2

. Find a general formula for the suta+ 3+ 5+ --- + (2n + 1).

Solution: ltem 3

. Find the sun¥ + 10 + 13 + - - - + 307.

. Find the sum of a general arithmetic series:

a+(a+d)+ (a+2d)+ -+ (a+nd).

. Findthe sumot +2+ 4+ 8+ ---+ 128. (Each term is double the previous.)

Solution: ltem 9

. Findthesumot +2 + ... 427,

Solution: Item 9

Findthe sumo8 +6 + 12 +24 + --- + 3 - 2™,
Solution: Item 10

Findthe sumof/2 +1/4+1/8 + .-+ 1/256.
Solution: ltem 11

Find the infinite sum1/2 +1/4+1/8 +1/16+ ---.
Solution: Iltem 12

Find the sum of + ar + ar? + - - - + ar™.



13. (Telescoping series) Find the finite and the infinte sulmvibéeach term has the
form1/(n(n + 1))):

1/6+1/12+1/20+1/30 + - - - 1/2550,
1/64+1/12+1/20+1/30+--- .
Solution: Item 13

14. (*) Find the suml + 4 + 9 + 16 + - - - + n?. (**) Can you find the sum of the
first n cubes? The first fourth powers?

Hint and Solution: Item 14

15. Can you construct any nice formulas from the followinggra?

1 = 18

3+5 = 23

7T+9+11 = 33
134+15+17419 = 43
214+234+25+27+29 = 5°

16. Can you use the diagram in Figure 1 to show another wayldalate13 + 23 4
3+ +nd?

Figure 1: Sum of cubes

17. Try to draw a diagram with dots that demonstrates that:
(n+1)%=n+3n>+3n+1.

Hint: one nice solution is three-dimensional. What are theesponding dia-
grams in two and one dimension?
Solution: Item 4

18. (*) Can we extend the idea above to help visualize somgthibout four dimen-
sions?



3.2 Equations and their Graphs

Next we'll look at the exact relationship between equatemd graphs in two variables,
x andy. The first couple of exercises seem unrelated, but will hefpygur mind
thinking geometrically about the problems rather than ladgieally.

1. Visualization exercises:
Try to solve these first in your head, without drawing picttiepossible.
How many:

corners (vertices) does a cube have?
faces does a cube have?

edges does a cube have?

Same questions: how many vertices, faces, edges has athial?
e ...has an octahedron?

e ...has an Egyptian pyramid?

e ...has a cube with a corner chopped off?

e ...have some other shapes?

Solution: Iltem 5
2. Describe:

e intersections of a plane with a sphere
e intersections of two spheres
e intersections of a cube with a plane
3. When we draw a graph of an equation like= 3z + 2, exactly what does the
graph mean? We often look at graphs of quadratic equatiopauiicular for

points where the curve (parabola, for quadratic equatiorsjses the:-axis.
What does this mean?

Solution: ltem 6

4. Examine equations of lines, circles, and parabolas téirsgsome intuitive rea-
sons why they have the form that they do.

5. What does the graph of this look like:

(2* +y* —25)(3x — 2y +3)(4a® —32+2—y) =0
Solution: Item 8

6. Visualizing inequalities. For example, how are the geapty = 32 + 4,y <
3z + 4 andy > 3z + 4 related? How about? + y? < 25?



7. Suppose we are looking for solutions to sets of simultasemuations in two
variables. The number of possible solutions can be imadigedanipulating the
graphs in your mind. What sorts of situations can occur withations having
the following sets of graphs?

two lines

three lines

line and circle

two circles

line and ellipse

two ellipses

parabola and circle
parabola and line
cubic curve and a line
cubic curve and a circle
two cubic curves

8. Making up equations of curves with given properties (fixean exam).

Parabolas opening up or down. Left or right.
Parabolas symmetric about the y-axis.

A cubic polynomial that has roots 1, 2 and 3.

A cubic polynomial that has one root, two roots.

A line with slope 2/3 that is tangent to the unit circle.

9. (*) Iterated functions.

10. Visualizing areas of geometric objects, from “first piples” — in other words,
if all we know is that the area of a rectangle with sides of taeg andb is ab,
how can we derive the formulas for areas of objects like:

a right triangle?
any triangle?
atrapezoid?
acircle?

11. (**) Same question as above, but in three dimensiondl Weknow is that the
volume of a rectangular solid igh¢, where the lengths of the sides ate and
¢, how can we derive formulas for volumes of objects like:

a pyramid?
acone?

a sphere?
a prism?



4 Symmetry

Many of the problems below can be solved using standardefaute techniques, but
every one of them can also be solved in a simpler way using argkred notion of
symmetry.

1. Given a standar8 x 3 tic-tac-toe board, how many essentially different ways
are there to make the first move?

2. (**) Given a4 x 4 x 4 three-dimensional tic-tac-toe board, how many esseptiall
different ways are there to make the first move? (Hint: theran “obvious”
answer, but the real answer is surprising and amazing.)

3. (*) Given a pentagram with0 holes as in Figure 2, fill in the holes with the
following 10 numbers:1,2,3,4,5,6,8,9,10 and 12 such that the sum of the
numbers on each of the ten straight lines is the same. (Steghbyg Harold
Reiter.)

Figure 2: Fagnano's Problem

4. Suppose you decide to sell sudoku puzzles to your locaspaper, but you are
too lazy to work out any actual puzzles, so your plan is tol ste&xisting puzzle
and modify it so that it is not easily recognized. What ogeret can be applied
to an existing puzzle so that the resulting puzzle look®difit? (Hint: one very
easy idea is to placezawhereever the original puzzle had and vice-versa.)

5. Ifthere ar&70725 ways to choose four cards from a deckef how many ways
are there to choost cards from a deck df2?

6. Acircleis inscribed in an isosceles trapezoid as in Fegur(An isosceles trape-
zoid is a trapezoid where the two non-parallel sides ha valdgaogth. In Fig-
ure 3, the trapezoid is isoscelesdD = BC.) If segmentAB has length and
segment’'D has lengthl, how long are the other two sideBC and D A?



Figure 3: Isosceles Trapezoid

7. Given the following system of two equations and two unknsywhere the num-
bersa, b, ¢, d, e and f are constant:
ar+by = c
de+ey = f

Suppose an oracle tells you that for any (walinost any') set of values for
a,b,c,d, e andf that the solution for: is given by:

_ce—bf
" ae—bd

How can you find the value af, with minimal effort?

8. What is the relationship between the following pairs adgirs: y = 22 and
x = y2? How aboutry® — 32%y? = 0 andyx® — 33222 = 0?

9. What sorts of symmetries can you find in the graphs of thieviahg equa-
tions. For example, which ones will be symmetric aboutihexis, they-axis,
et cetera. What other symmetries can you find?

o y=u2a2
e Yy = 1173.

e y =z, wheren is a positive integer.

o 22 4+ 9% =25,
o 22+ 3y? = 25.
o y=1/x.

o 12—y =1.

10. What can you say about the graph of a functfothat satisfies the following
conditions:

e Whatif f(x) = f(—z), forall z?
e Whatif f(z) = —f(z), forall z?

1To be precise, for any values such that— bd # 0.

10



11

12.

13.

14.

15.

16.
17.

18.

19.

o Whatif f(x) = f(xz + 2), for all 2?
e If fisanyfunction, what can be said about the graph of the funcfiar?)?

. There are originally two piles of coins on a table, eactlith originally con-
tains 10 coins. A game is played by two people who alternately selquitea
and remove some number of coins from that pile. The player rehmves the
last coin from the table wins. Does the first or second plageeha winning
strategy?

Consider the following game. Begin with an empty circlar rectangular)
table. Players alternate moves, and it is your turn to mowe, must place a
quarter flat on the table. If there is no space left to do so,lgse. Does the first
or second player have a winning strategy?

Two players take turns placing bishops on a stanglaiglchessboard, but once a
bishop is placed, it is not moved, and no bishop can be placedsguare which
is attacked by a bishop already placed. The first person whdble to place a
bishop on the board loses. Which player has a winning siyateg

If you flip a fair coin123 times, at the end are you more likely to have more
heads or more tails?

An urn contain$00 red balls andl00 blue balls. Without looking at then257
balls are removed from the urn and discarded. Finally, alsibgll is drawn
from the urn. What is the probability that it is red?

Find the area under the curwe? z fromx = 0to z = 7/2.

You have a cup of coffee and an identical cup of cream. Botttain the same
amount of liquid. You take a tablespoon of cream and put ihdoffee. It is
then mixed thoroughly and a tablespoon of the resulting unéxts added back
to the cream. Is there now more cream in the coffee or moreedffthe cream?
What if you don’t mix thoroughly before you return the talesn of mixture to
the coffee cup?

A farmer with a bucket needs to water his horse. Both ath@same side of a
canal that runs in a straight line. The farmer and his hors®arthe same side
of the canal, but the farmer needs to go to the river first taH@l bucket before
he takes it to his horse. At what point on the canal should Heatdhe water to
minimize the total distance he travels?

Suppose your cue ball on a normal rectangular billiabietés at pointP and
the target ball is at poir@®. Is it possible to hit the target after bouncing off one
cushion? Two cushions? Three? How can you figure out whiattkn to hit
the cue ball to achieve these results. (Assume that the duédes a “perfect”
bounce each time, with the angle of incidence equal to théeaofgeflection.
Also assume that the table dimensions are exa&ctly.)

11



20.

21.

22.

23.

24,
25.
26.

27.

In a room with rectangular walls, floor and ceiling, if adgy is on one of the
surfaces and the fly on another, what is the shortest pattpterscan take to
arrive at the fly, if the fly does not move? (The answer, of ceursll depend on
the dimensions of the room, and upon where the spider andythretilly start.
What we're searching for is a method to find the solution for Bom size and
any initial positions of the spider and the fly.)

(*) If you build an elliptical pool table and you strike albso that it passes
through one of the ellipse’s foci, then after it bounces offughion, it will pass
through the other focus. Show that this is true, based (lgps& what you
learned from the farmer and his horse a couple of problemsRgmember that
an ellipse is defined to be the set of all points such that thedfitheir distances
to the two foci is constant. Hint: what would the shape of @rive so that it
doesn’t matter where the farmer goes to get his water?

(*) Fagnano’s problem. Show that in any acute-anglethtiie, the triangle of
smallest perimeter that can be inscribed in it is the saeddlpedal triangle”
whose vertices are at the feet of the altitudes of the giviandte. In Figure 4,
ADEF is the pedal triangle fon ABC. What happens if the given triangle
contains a right angle or an obtuse angle?

Figure 4: Fagnano's Problem

Fifteen pennies are placed in a triangular shape as simdvigure 5. Many sets
of three centers of those pennies form the vertices of eguéhtriangles, two
samples of which are illustrated in the figure. Is it possiblarrange the pennies
in such a manner that no set of penny centers that form are¢gpal triangle are
all heads or all tails?

Add the whole numbers fromto 100.
Find the value of > 0 which minimizes the functiorf(z) = = + 1/x.

What is the area of the largest rectangle that can bealestin a circle of radius
1?

In a triangle with sides, 1 andz, find the value of: that maximizes the area.

12



Figure 5: Fagnano’s Problem

28. Give some strong evidence that an equilateral triarsgtbea triangle of largest
area that can be inscribed in a circle. What is the largestrijateral that can be
so inscribed? The largestsided figure?

29. If you have a million points inside a circle, can you findreelthat divides them
such that there are exactly half on each side?

30. Find all integer values, b andc such thatz + b + ¢ = abe.

31. A cube is built with wire edges as in Figure 6. If wires anamected to opposite
corners of the cube and a one-ampere current is passed thitoag much cur-
rent flows through each of the edges. (Not every edge will iz@same current
passing through it.)

Figure 6: Wire cube

32. (*) Asquare metal plate has three sides held at a temperat100 degrees and
the fourth at zero degrees. What's the temperature at the pothe center of
the platé?

2This and the following problem depend on a little bit of plegsi Solutions to the heat equation (and
to electrical circuits in the next problem) often satisfg #tondition of superposition, meaning that a set of
solutions can be added together to make the final solutioth &dhese problems are of that sort.

13



33. (*) Aninfinite square mesh of wire (a small part of whiclsfown in Figure 7)
extends in every direction. All grid lengths are equal, alhdh& wire has the
same resistance per unit length. Two wires are connectatjdoent grid points
A andB and a one-ampere current enters throdgind leaves througB. What
is the current throughl B? Note that the electrons will follow many paths, with
more following the shorter paths since the resistance idlema

Figure 7: Inifinte wire mesh

34. Evaluate the following three expressions using a (laéiog) symmetry obser-

vation:
\/1+\/1+\/1+---
1

1+ !
1+ !
14
TN
2 4 8 16
35. Solve forz: .
2=2a"
(*) Solve for z:
4 = %"

What is going on here?
36. How quickly can you expand the following product?
(z+y)y+2)(z+2)?

What is different about the product?

(x—y)(y—x)(z—x)?

14



37. If{z =1,y = 2,z = 3} is a solution for the following set of equations, find five
more solutions. (*) Find all solutions far, y andz in the equations below:

r+y+z = 6
24y 422 = 14
zyz = 6

38. (**) Find all solutions forw, z, y andz in the following system of equations:

w+zrz+y+z = 10
w? + 22+t + 22 = 30
w?+ 2% +yP+ 22 = 100

wryz = 24

15



5 Solutions to Various Problems

1. Find the sum + 2 + - - - + n, wheren is an arbitrary positive integer.

Two triangular sets from to n are constructed which, when put together, form
arectangle that's x (n + 1). Thus twice the total ia(n + 1), so:

n(n—i—l).

L+24dn=——

2. Find the sum +3+5+---+1001. In other words, sum the odd numbers from
1to 1001.

In the table below, think of each of the digits not as a numibatas an object.
Note that there is ong, three3’s, five 5's, et cetera. So in a sense, in the figure
below, the number of digits represents the sum 3 + 5 + 7 + 9. We can see
that this makes a square containing 25 digits, so the sumeatost be25. Is

it clear that each new odd number of digits can be added inaime4 -shaped
pattern making a square that has a side one longer than thieyse

113|5|7]9
313|5|7]9
5(5/5|7|9
7TV71717]9
919191919

We can also see that the side of the rectangle is going to befhal+ 1, wheren

is the largest odd number added. (By ignoring@tsein the example above, for
example we see4ix 4 square, and is half of 741, et cetera. Thus to add all the
odd numbers from to 1001, we'll obtain a square of items witth02/2 = 501
on each side. Thus:

1+34+54---+1001 = 5012

This problem can also be solved in exactly the same way as meed the first
two examples in this section, assuming that you are caréfuliiacounting the
number of dots in the length and width of the resulting regtan

3. Find a general formula for the suta+ 3+ 54 --- + (2n + 1).

Using exactly the same argument as above, we’'ll have a squitirea side of
(2n+1+1)/2=(2n+2)/2=n+1, sothe sumis:

14+34+5+--+2n+1)=(n+1)~%
4. Try to draw a diagram with dots that demonstrates that:
(n+1)>=n+3n*+3n+ 1.
Hint: one nice solution is three-dimensional. What are theesponding dia-

grams in two and one dimension?

16



Figure 8:(n +1)2 =n3 4+ 3n2+3n+1

See Figure 8. Imagine that a large cube with all three sidaaleq length to
n + 1is sliced as in the figure, where the thin slices have widtfihe original
cube has volumén + 1)3, and it is cut into eight pieces. One is a cube of side
with volumen?3, three are plates having volumen -1 = n? (since the thickness
is 1), three are rods with volume - 1 - 1 = n, and there is a single small cube
of volume1? = 1. Adding the eight volumes together shows us that the total
volume is:

(n+1)®=n+3n*+3n+1.

5. How many

e corners (vertices) does a cube have? Answer: 8
o faces does a cube have? Answer: 6
e edges does a cube have? Answer: 12

e Same questions: how many verticéd) (faces ), edges ) has a tetra-
hedron?
Answer:V =4, F =4, FE =6.
e ...has an octahedron?
Answer:V =6, F =8, F = 12.
e ...has an Egyptian pyramid?
Answer (counting the basey: =5, FF =5, F = 8.
e ...has a cube with a corner chopped off?
Answer:V =10, F =7,F = 15.
e ...have some other shapes?

Obviously, the answers depend on the solid, but assumingpiitehas no
holes, the answer has to satisty:— E + F' = 2. This is known as Euler’s
Theorem.

6. Describe:

e intersections of a plane with a sphere

If the plane touches the sphere at a point, then there is @oim¢intersec-
tion. Imagine touching a flat plate to a ball.

17



If the plane cuts the sphere in more than one point, it mustaitcle.
The largest circle it can cut will occur when the plane passesugh the
center of the sphere. If this occurs, the circle of inteiisecis called a
“great circle”. To help visualize this, think of the spherethe earth, and
look at the lines of constant latitude (constant distancéhrar south of the
equator). All are circles and if you look at a globe of the eaand look
straight down on the north pole, all the constant-latitided are circles.
Imagine a plane perpendicular to the axis of the north-spaté passing
through the earth. At every stage it will cut a circle of camtatitude.

A few great circles on the earth are the equator or the linesoaktant
longitude, but there are many others. If you are forced tpatethe surface
of the earth (in a boat, for example) the shortest path isggdogreat circle.
To find that great circle, consider the origin and destimatie two points
and find the plane passing through those two points and thtercefthe
earth. The path will be along the great circle which is thersgction of
that plane and the surface of the earth.

e intersections of two spheres

Figure 9: Two intersecting spheres

See Figure 9. As with the plane and the sphere, two spheresgah at
a point. If the intersection is larger than a point, it will becircle (or, if
the two spheres are identical, it will be the entire sphefe)see why it is
a circle, imagine a line connecting the centers of the spghened slide a
plane along that line, perpendicular to it, until it pas¢estigh a common
point of the two spheres. The line will cut a circle on both ex@s of

18



identical size, so it must the the same circle on both of them.

e intersections of a cube with a plane
This is actually avery difficult visualization exercise. If the plane just
touches a vertex, you can get just that point. If the planergaicts an
edge, you can get a line segment the length of the edge. [fléme guts
into the cube, you can get all sorts of odd-shaped polygams friangles
to hexagons. In fact, it's possible to get a perfect hexagon.
If the plane just cuts the tip of a vertex, you can get a triangl cut near
the vertex perpendicular to the axis connecting that vadeke opposite
one on the cube will yield an equilateral triangle. If ther@as tilted,
many more triangles can be obtained, ranging from equékterery long,
skinny ones.
If you cut parallel to a face, you'll obtain a perfect squdfe/ou imagine
hanging the cube by a vertex and cutting half-way betweertdheand
bottom vertices perpendicular to that vertex-vertex atkiat will make a
perfect hexagon. By tilting away from that axis, you'll getrjjagons.

7. When we draw a graph of an equation like= 3z + 2, exactly what does the
graph mean? We often look at graphs of quadratic equatiopauiicular for
points where the curve (parabola, for quadratic equatiorsjses the:-axis.
What does this mean?

A
/

\
i \ /
2L J
-af \\ j
o / 1
S S Y S I E N B
6 —4 -2 0 2 4 6

Figure 10: Graph ofz? + y? — 25)(3z — 2y + 3) (422 -3z +2—y) =0

8. See Figure 10. We are trying to find the places where theugtad three expres-
sions is zero. If a product of numbers is zero, then one or wiiditese numbers
must be zero. So we will have the product equal to zero if arthefollowing
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Figure 11: Graph ofz? + y? — 25)(3z — 2y + 3)(42%2 - 32 +2—y) =0

three equations is true:

2 +y?—25=0
3z —2y+3=0
422 =3z +2—y=0
The first is just the equation of a circle of radiusentered at the origin; the sec-

ond is the equation of a straight line, and the third is theatiqn of a parabola.
The figure shows all the solutions for all three.

Another way to visualize this is to imagine the surface of @e¢hdimensional
plot of:

z= (2% +y* —25)(3z — 2y + 3)(42® — 3z + 2 — y).

This will be a complicated three-dimensional plot, but what are interested
in is the intersection of this plot with the plane== 0. This is illustrated in
Figure 11.

. See Figure 12. Begin with the small square of dreaar the upper left corner of
the figure. Then rectangles and squares having &ea8, and so on, are added
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10.

11.

Figure 12: Addingl +2+4+8+---

alternately below and to the right of the original squareug,Hor example, the

suml + 2 + 4 + 8 is represented by a square in the upper right that is missing a

single tiny square at its upper left corner.

Assuming the little missing square were actually thereheactangle or square
added doubles the previous area, so if theredeems in:1 +2+44-- 4271,
the sum of those terms will b&" — 1. The “—1” subtracts off the area of the
upper left corner that is missing.

From these observations, we can see that:
1+2+4+8+---+128 =256 —1 = 255,

and
14+2+4+8+--- 2" =271 1,

This is based on the solution in Item 9. Note that evemn tier this series is
exactly3 times as big as the term in the series:

1+2+4+8+---,
so the sum will be3 times as large:
34+6+12+24+---+3-2" =3(2"" —1).
See Figure 13. In the figure, imagine that the area of thieeesguare idl. It
is successively divided, first into halves, then one of tHedsais divided in half

making two quarters, one of the quarters is split in half mghkivo eighths, et
cetera. At each stage of the calculation:

1/2

1/241/4
1/2+1/4+1/8
1/241/4+1/841/16
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12.

13.

172

8

4
1/32

-

Figure 13: Addingl/2+1/4+1/8 + - --

1/16

if you look at a set of areas that corresponds to that, theirefaato complete the
entire square is simply a copy of the smallest rectangletshat you obtained.
Thus:

1/2+1/4+1/8+ - +1/256 = 1 — 1/256 = 255,/256.

See Item 11 and Figure 13. Each additional term in theseri
1/2+1/4+1/8+1/164+1/32+4---

fits inside the large square of area one, but basically cetsititovered part in
half. Thus, as more and more terms are added, the uncoveregepa as tiny

as you want, so the area gets closer and closérgo it is reasonable to set the
infinite sum tol. This idea can be made rigorous mathematically (the thebry o
limits), but this paper is more concerned with visualizatiso we will not do so
here.

(Telescoping series) Find the finite and the infinte sulovbéeach term has the
form1/(n(n + 1))):

1/6+1/12+1/20 +1/30 4 - - - 1/2550,
1/64+1/12+1/20+1/30+--- .
The key here is to note that:

111

nin+1) n n+1

Thusl/6=1/2-1/3,1/12=1/3—-1/4,1/20 =1/4 — 1/5 and so on. With
this observation, the first sum is equal to this:

(1/2—1/3)+ (1/3—1/4) + (1/4 —1/5) + -+ (1/50 — 1/51).
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14.

If we regroup, the sum “telescopes”, and is equal td — 1/51 = 49/102.

In the case of the infinite sum, the terms cancel all the waynjew the answer
is just1/2.

Hint: Here is a very interesting way to write:

S=1P42P 4+ 3P + ...+ nP.
S =n(1P —0P)+ (n—1)(2P = 1P) 4+ (n—2)(3P = 2P) +- - -+ (1) (nP — (n—1)P).
To see this, just expand the terms and rearrange:
S=n1"P—(n—-1)1"4+(n—-1)22—(n—2)2"+---+2(n—1)? — (n—1)? +n?.

The terms above almost cancel, and after cancellation, vi&mthe correct
result for n.

23



