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Abstract

We will examine visualization and symmetry in a very generalway by means
of a set of problems. Many topics in mathematics can be made much clearer when
symmetric aspects are made clear or when nice alternative visualizations are pos-
sible. When this occurs, it helps both the student and the teacher.

There is a large amount of potential classroom material here, and almost any
small part of it could be used for an entire class session.

1 Introduction to Visualization

All of us (including both our students and ourselves) think differently. Some of our
brains work well manipulating symbols (algebraic computations, for example) and oth-
ers of us are better at imagining and mentally manipulating shapes and diagrams (we’ll
call this geometric manipulation). Often problems can be viewed both algebraically
and geometrically, and can be attacked using both methods.

We will use the term “visualization” here in a very general way. Basically, the idea is
to try to find different ways to think about each problem sinceeach different view gives
us more understanding. The more different ways you have of looking at a problem, the
better you will understand it.

Note: Some of the exercises below are marked with one or two asterisks: (*) or (**).
These indicate problems that may be more difficult or much more difficult, respectively,
than the others. Of course these are totally subjective determinations by the author;
different people have different talents.

This article is still a work in progress, and not all the solutions are complete. Any
problem that has a solution here will include a number, like “Solution: Item 5”. This
means that item number 5 in Section 5 is a solution (or at leasta hint) for that problem.

2 Visualization of Algebraic Manipulation Rules

As a first example, we will try to come up with a set of ways that students can think
about algebraic concepts in a way that makes them not just a set of somewhat arbitrary
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rules, but as sensible ideas that are “obviously” true. There’s nothing special about the
examples below, except that whenever we present a new topic in class, it’s good to try
to think of ways that the new concept is “natural”, based on what the students already
know.

1. The distributive law. Rather than just the sterile formula that states that given
any three real numbersA, B andC that:

A(B + C) = AB + AC

why not approach it this way:

“The parentheses group things together. Suppose we’re thinking about a bunch
of married couples, each of which consists of a man and a womanand we could
write an ‘equation’ that looks something like this:

couple = (man + woman).

The parentheses indicate that the man and woman are grouped together. What
would8 such married couples look like? Well, it would be8 copies of that group:

8 couples = 8(man + woman).

But isn’t it obvious that this would amount to8 men and8 women? We’re making
8 copies of the group, so that would be8 of everything in the group.”

Next you could look at something slightly more complex, likepacks that consist
of 5 baseball cards and one piece of chewing gum. What would3 of those packs
look like? Well:

3 packs = 3(5 cards + 1 gum).

It should be clear what the resulting collection consists of; namely,3 · 5 = 15
baseball cards and3 · 1 = 3 pieces of gum.

2. The commutative laws for addition and multiplication. This can probably be
done with pictures that look something like these:

7 + 3 • • • • • • • + • • •
3 + 7 • • • + • • • • • • •

5 · 3
• • • • •
• • • • •
• • • • •

3 · 5
• • • • •
• • • • •
• • • • •
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If we only talk about addition and multiplication, studentsmay think, ”Why even
mention the commutative law? It’s obvious.” So look at some operations that are
not commutative, like subtraction and division. What about exponentiation?

3. Associative laws. By looking at the combination of dots as in the examples
above, the associative laws or addition and multiplicationcan be made clear.
This is very easy for additon:

(2 + 3) + 4 = 2 + (3 + 4)

is equivalent to:

(• • + • ••) + • • •• = • • +(• • • + • • ••).

For multiplication, the product of three numbers can be viewed as 3D blocks of
“dots”. If we agree thata× b× c refers to a block of widtha, lengthb and height
c, then the two groupings that the distributive law declares to be the same just
amount to slicing the block in different orders. The same total number of dots
remains the same.

As we did with the commutative law, it’s a good idea to look at examples of
operations that arenot associative. Again, subtraction and division are good
examples. What about exponentiation?

4. Combining like terms. When asked to take an expression and “simplify” it, the
following expression:

2xy + 3xy3 + z + 2xy3 + 3z

is probably a far more frightening example than:

2 dogs + 3 cats + 1bird + 2 cats + 3 birds.

If we think of “xy” as “dog”, “xy3” as “cat” and so on, the two “expressions”
above are equivalent.

For students who may try to combine terms like3x and4xy since they share
anx, you may be able to show them why this won’t work because it should be
obvious that there’s no way to combine3 “dogs” with 4 “doghouses”: the terms
have to be identical before you can sum the constants.

5. (*) Nice examples for the use of the commutative and distributive laws and com-
bination of like terms can be sought in ordinary arithmetic.If the students re-
member how to add and multiply, these operations can be used as examples. If
they’re rusty, maybe the laws can help remember the operations:

7 × 368 = 7 × (3 × 100 + 6 × 10 + 8) . . .

Similarly, addition is combining like terms, then carryingis regrouping.
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6. (*) Possible idea: could polynomial multiplication (in one variable) be made
clear in terms of standard multiplication? For example, if we agree thatx = 10,
then the following are equivalent:

123 × 456 = (x2 + 2x + 3)(4x2 + 5x + 6).

The only problem here is that polynomial multiplication does nothing about car-
rying. In a sense, it’s a shame that carrying makes ordinary arithmetic multipli-
cation more difficult than polynomial multiplication.

7. Can we come up with others?

3 More Visualization Exercises

Mathematics uses both the (symbol-manipulating) left brain and the (visual, geomet-
ric) right brain. Both are important, although the emphasisin elementary mathematics
courses is generally on “left-brained” activity. Following are some exercises in visual-
ization, some general, and some specifically aimed at problems related to elementary
algebra.

What we will do in this section is look at “translations” of algebraic problems into
possibly more easily-visualized geometric problems.

3.1 Adding Series of Numbers

1. Summing the basic series. We will work out this first example in detail. Follow-
ing are more examples that can be approached in a similar manner.

As an example, suppose we need to find the sum:

1 + 2 + 3 + ... + 100.

Let’s look at a simpler example which, when solved visually,will make it obvi-
ous how to sum the series above. Let’s add the following series visually:

1 + 2 + 3 + ... + 10.

If we use “•” to represent a unit, then1 = •, 2 = ••, 3 = • • •, et cetera. Deter-
mining the sum from1 to 10 is equivalent to counting the dots in the following
pattern:

•••••••••••••••••••••••••••••••••••••••••••••••••••••••
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Just draw the same number of dots, but upside-down, and we obtain the following
picture:

• •••••••••••• •••••••••••• •••••••••••• •••••••••••• •••••••••••• •••••••••••• •••••••••••• •••••••••••• •••••••••••• •

=⇒

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

It’s easy to count the dots in the pattern above: there are10 rows of11 dots, for
a total of10 × 11 = 110. This is twice as many as we want, however, so there
are110/2 = 55 dots in the original triangular pattern.

2. Find the sum1 + 2 + · · · + n, wheren is an arbitrary positive integer.

Solution: Item 1

3. Find the sum1+3+5+ · · ·+1001. In other words, sum the odd numbers from
1 to 1001.

Solution: Item 2

4. Find a general formula for the sum1 + 3 + 5 + · · · + (2n + 1).

Solution: Item 3

5. Find the sum7 + 10 + 13 + · · · + 307.

6. Find the sum of a general arithmetic series:

a + (a + d) + (a + 2d) + · · · + (a + nd).

7. Find the sum of1 + 2 + 4 + 8 + · · · + 128. (Each term is double the previous.)

Solution: Item 9

8. Find the sum of1 + 2 + · · · + 2n.

Solution: Item 9

9. Find the sum of3 + 6 + 12 + 24 + · · · + 3 · 2n.

Solution: Item 10

10. Find the sum of1/2 + 1/4 + 1/8 + · · · + 1/256.

Solution: Item 11

11. Find the infinite sum:1/2 + 1/4 + 1/8 + 1/16 + · · · .
Solution: Item 12

12. Find the sum ofa + ar + ar2 + · · · + arn.
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13. (Telescoping series) Find the finite and the infinte sum below (each term has the
form 1/(n(n + 1))):

1/6 + 1/12 + 1/20 + 1/30 + · · · 1/2550,

1/6 + 1/12 + 1/20 + 1/30 + · · · .

Solution: Item 13

14. (*) Find the sum1 + 4 + 9 + 16 + · · · + n2. (**) Can you find the sum of the
first n cubes? The firstn fourth powers?

Hint and Solution: Item 14

15. Can you construct any nice formulas from the following pattern?

1 = 13

3 + 5 = 23

7 + 9 + 11 = 33

13 + 15 + 17 + 19 = 43

21 + 23 + 25 + 27 + 29 = 53

16. Can you use the diagram in Figure 1 to show another way to calculate13 + 23 +
33 + · · · + n3?

Figure 1: Sum of cubes

17. Try to draw a diagram with dots that demonstrates that:

(n + 1)3 = n3 + 3n2 + 3n + 1.

Hint: one nice solution is three-dimensional. What are the corresponding dia-
grams in two and one dimension?

Solution: Item 4

18. (*) Can we extend the idea above to help visualize something about four dimen-
sions?
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3.2 Equations and their Graphs

Next we’ll look at the exact relationship between equationsand graphs in two variables,
x andy. The first couple of exercises seem unrelated, but will help get your mind
thinking geometrically about the problems rather than algebraically.

1. Visualization exercises:

Try to solve these first in your head, without drawing pictures, if possible.

How many:

• corners (vertices) does a cube have?

• faces does a cube have?

• edges does a cube have?

• Same questions: how many vertices, faces, edges has a tetrahedron?

• . . . has an octahedron?

• . . . has an Egyptian pyramid?

• . . . has a cube with a corner chopped off?

• . . . have some other shapes?

Solution: Item 5

2. Describe:

• intersections of a plane with a sphere

• intersections of two spheres

• intersections of a cube with a plane

3. When we draw a graph of an equation likey = 3x + 2, exactly what does the
graph mean? We often look at graphs of quadratic equations inparticular for
points where the curve (parabola, for quadratic equations)crosses thex-axis.
What does this mean?

Solution: Item 6

4. Examine equations of lines, circles, and parabolas to seefind some intuitive rea-
sons why they have the form that they do.

5. What does the graph of this look like:

(x2 + y2 − 25)(3x − 2y + 3)(4x2 − 3x + 2 − y) = 0

Solution: Item 8

6. Visualizing inequalities. For example, how are the graphs of y = 3x + 4, y <
3x + 4 andy > 3x + 4 related? How aboutx2 + y2 < 25?
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7. Suppose we are looking for solutions to sets of simultaneous equations in two
variables. The number of possible solutions can be imaginedby manipulating the
graphs in your mind. What sorts of situations can occur with equations having
the following sets of graphs?

• two lines

• three lines

• line and circle

• two circles

• line and ellipse

• two ellipses

• parabola and circle

• parabola and line

• cubic curve and a line

• cubic curve and a circle

• two cubic curves

8. Making up equations of curves with given properties (likefor an exam).

• Parabolas opening up or down. Left or right.

• Parabolas symmetric about the y-axis.

• A cubic polynomial that has roots 1, 2 and 3.

• A cubic polynomial that has one root, two roots.

• A line with slope 2/3 that is tangent to the unit circle.

9. (*) Iterated functions.

10. Visualizing areas of geometric objects, from “first principles” – in other words,
if all we know is that the area of a rectangle with sides of lengthsa andb is ab,
how can we derive the formulas for areas of objects like:

• a right triangle?

• any triangle?

• a trapezoid?

• a circle?

11. (**) Same question as above, but in three dimensions: If all we know is that the
volume of a rectangular solid isabc, where the lengths of the sides area, b and
c, how can we derive formulas for volumes of objects like:

• a pyramid?

• a cone?

• a sphere?

• a prism?
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4 Symmetry

Many of the problems below can be solved using standard, brute-force techniques, but
every one of them can also be solved in a simpler way using a generalized notion of
symmetry.

1. Given a standard3 × 3 tic-tac-toe board, how many essentially different ways
are there to make the first move?

2. (**) Given a4×4×4 three-dimensional tic-tac-toe board, how many essentially
different ways are there to make the first move? (Hint: there is an “obvious”
answer, but the real answer is surprising and amazing.)

3. (*) Given a pentagram with10 holes as in Figure 2, fill in the holes with the
following 10 numbers:1, 2, 3, 4, 5, 6, 8, 9, 10 and12 such that the sum of the
numbers on each of the ten straight lines is the same. (Suggested by Harold
Reiter.)

Figure 2: Fagnano’s Problem

4. Suppose you decide to sell sudoku puzzles to your local newspaper, but you are
too lazy to work out any actual puzzles, so your plan is to steal an existing puzzle
and modify it so that it is not easily recognized. What operations can be applied
to an existing puzzle so that the resulting puzzle looks different? (Hint: one very
easy idea is to place a2 whereever the original puzzle had a1 and vice-versa.)

5. If there are270725 ways to choose four cards from a deck of52, how many ways
are there to choose48 cards from a deck of52?

6. A circle is inscribed in an isosceles trapezoid as in Figure 3. (An isosceles trape-
zoid is a trapezoid where the two non-parallel sides ha ve equal length. In Fig-
ure 3, the trapezoid is isosceles ifAD = BC.) If segmentAB has lengthl and
segmentCD has lengthL, how long are the other two sides,BC andDA?
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DD CC

BBAA

Figure 3: Isosceles Trapezoid

7. Given the following system of two equations and two unknowns, where the num-
bersa, b, c, d, e andf are constant:

ax + by = c

dx + ey = f

Suppose an oracle tells you that for any (well,almost any1) set of values for
a, b, c, d, e andf that the solution forx is given by:

x =
ce − bf

ae − bd
.

How can you find the value ofy, with minimal effort?

8. What is the relationship between the following pairs of graphs: y = x2 and
x = y2? How aboutxy3 − 3x2y2 = 0 andyx3 − 3y2x2 = 0?

9. What sorts of symmetries can you find in the graphs of the following equa-
tions. For example, which ones will be symmetric about thex-axis, they-axis,
et cetera. What other symmetries can you find?

• y = x2.

• y = x3.

• y = xn, wheren is a positive integer.

• x2 + y2 = 25.

• x2 + 3y2 = 25.

• y = 1/x.

• x2 − y2 = 1.

10. What can you say about the graph of a functionf that satisfies the following
conditions:

• What if f(x) = f(−x), for all x?

• What if f(x) = −f(x), for all x?

1To be precise, for any values such thatae − bd 6= 0.
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• What if f(x) = f(x + 2), for all x?

• If f is any function, what can be said about the graph of the functionf(x2)?

11. There are originally two piles of coins on a table, each ofwhich originally con-
tains10 coins. A game is played by two people who alternately select apile
and remove some number of coins from that pile. The player whoremoves the
last coin from the table wins. Does the first or second player have a winning
strategy?

12. Consider the following game. Begin with an empty circular (or rectangular)
table. Players alternate moves, and it is your turn to move, you must place a
quarter flat on the table. If there is no space left to do so, youlose. Does the first
or second player have a winning strategy?

13. Two players take turns placing bishops on a standard8×8 chessboard, but once a
bishop is placed, it is not moved, and no bishop can be placed on a square which
is attacked by a bishop already placed. The first person who isunable to place a
bishop on the board loses. Which player has a winning strategy?

14. If you flip a fair coin123 times, at the end are you more likely to have more
heads or more tails?

15. An urn contains500 red balls and400 blue balls. Without looking at them,257
balls are removed from the urn and discarded. Finally, a single ball is drawn
from the urn. What is the probability that it is red?

16. Find the area under the curvecos2 x from x = 0 to x = π/2.

17. You have a cup of coffee and an identical cup of cream. Bothcontain the same
amount of liquid. You take a tablespoon of cream and put it in the coffee. It is
then mixed thoroughly and a tablespoon of the resulting mixture is added back
to the cream. Is there now more cream in the coffee or more coffee in the cream?
What if you don’t mix thoroughly before you return the tablespoon of mixture to
the coffee cup?

18. A farmer with a bucket needs to water his horse. Both are onthe same side of a
canal that runs in a straight line. The farmer and his horse are on the same side
of the canal, but the farmer needs to go to the river first to fillthe bucket before
he takes it to his horse. At what point on the canal should he collect the water to
minimize the total distance he travels?

19. Suppose your cue ball on a normal rectangular billiard table is at pointP and
the target ball is at pointQ. Is it possible to hit the target after bouncing off one
cushion? Two cushions? Three? How can you figure out which direction to hit
the cue ball to achieve these results. (Assume that the cue ball does a “perfect”
bounce each time, with the angle of incidence equal to the angle of reflection.
Also assume that the table dimensions are exactly2 : 1.)
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20. In a room with rectangular walls, floor and ceiling, if a spider is on one of the
surfaces and the fly on another, what is the shortest path the spider can take to
arrive at the fly, if the fly does not move? (The answer, of course, will depend on
the dimensions of the room, and upon where the spider and the fly initially start.
What we’re searching for is a method to find the solution for any room size and
any initial positions of the spider and the fly.)

21. (*) If you build an elliptical pool table and you strike a ball so that it passes
through one of the ellipse’s foci, then after it bounces off acushion, it will pass
through the other focus. Show that this is true, based (loosely) on what you
learned from the farmer and his horse a couple of problems ago. Remember that
an ellipse is defined to be the set of all points such that the sum of their distances
to the two foci is constant. Hint: what would the shape of a river be so that it
doesn’t matter where the farmer goes to get his water?

22. (*) Fagnano’s problem. Show that in any acute-angled triangle, the triangle of
smallest perimeter that can be inscribed in it is the so-called “pedal triangle”
whose vertices are at the feet of the altitudes of the given triangle. In Figure 4,
△DEF is the pedal triangle for△ABC. What happens if the given triangle
contains a right angle or an obtuse angle?

AA

BB

CC

DD

EE

FF

Figure 4: Fagnano’s Problem

23. Fifteen pennies are placed in a triangular shape as shownin Figure 5. Many sets
of three centers of those pennies form the vertices of equilateral triangles, two
samples of which are illustrated in the figure. Is it possibleto arrange the pennies
in such a manner that no set of penny centers that form an equilateral triangle are
all heads or all tails?

24. Add the whole numbers from1 to 100.

25. Find the value ofx > 0 which minimizes the functionf(x) = x + 1/x.

26. What is the area of the largest rectangle that can be inscribed in a circle of radius
1?

27. In a triangle with sides1, 1 andx, find the value ofx that maximizes the area.
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Figure 5: Fagnano’s Problem

28. Give some strong evidence that an equilateral triangle is the triangle of largest
area that can be inscribed in a circle. What is the largest quadrilateral that can be
so inscribed? The largestn-sided figure?

29. If you have a million points inside a circle, can you find a line that divides them
such that there are exactly half on each side?

30. Find all integer valuesa, b andc such thata + b + c = abc.

31. A cube is built with wire edges as in Figure 6. If wires are connected to opposite
corners of the cube and a one-ampere current is passed through, how much cur-
rent flows through each of the edges. (Not every edge will havethe same current
passing through it.)

Figure 6: Wire cube

32. (*) A square metal plate has three sides held at a temperature of100 degrees and
the fourth at zero degrees. What’s the temperature at the point in the center of
the plate2?

2This and the following problem depend on a little bit of physics. Solutions to the heat equation (and
to electrical circuits in the next problem) often satisfy the condition of superposition, meaning that a set of
solutions can be added together to make the final solution. Both of these problems are of that sort.
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33. (*) An infinite square mesh of wire (a small part of which isshown in Figure 7)
extends in every direction. All grid lengths are equal, and all the wire has the
same resistance per unit length. Two wires are connected to adjacent grid points
A andB and a one-ampere current enters throughA and leaves throughB. What
is the current throughAB? Note that the electrons will follow many paths, with
more following the shorter paths since the resistance is smaller.

A B

Figure 7: Inifinte wire mesh

34. Evaluate the following three expressions using a (translation) symmetry obser-
vation:

√

1 +

√

1 +
√

1 + · · ·

1

1 +
1

1 +
1

1 + · · ·

1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · ·

35. Solve forx:
2 = xx

x
x···

.

(*) Solve forx:

4 = xx
x

x···

.

What is going on here?

36. How quickly can you expand the following product?

(x + y)(y + z)(z + x)?

What is different about the product?

(x − y)(y − x)(z − x)?
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37. If {x = 1, y = 2, z = 3} is a solution for the following set of equations, find five
more solutions. (*) Find all solutions forx, y andz in the equations below:

x + y + z = 6

x2 + y2 + z2 = 14

xyz = 6

38. (**) Find all solutions forw, x, y andz in the following system of equations:

w + x + y + z = 10

w2 + x2 + y2 + z2 = 30

w3 + x3 + y3 + z3 = 100

wxyz = 24
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5 Solutions to Various Problems

1. Find the sum1 + 2 + · · · + n, wheren is an arbitrary positive integer.

Two triangular sets from1 to n are constructed which, when put together, form
a rectangle that’sn × (n + 1). Thus twice the total isn(n + 1), so:

1 + 2 + · · · + n =
n(n + 1)

2
.

2. Find the sum1+3+5+ · · ·+1001. In other words, sum the odd numbers from
1 to 1001.

In the table below, think of each of the digits not as a number,but as an object.
Note that there is one1, three3’s, five 5’s, et cetera. So in a sense, in the figure
below, the number of digits represents the sum1 + 3 + 5 + 7 + 9. We can see
that this makes a square containing 25 digits, so the sum above must be25. Is
it clear that each new odd number of digits can be added in the same L-shaped
pattern making a square that has a side one longer than the previous.

1 3 5 7 9
3 3 5 7 9
5 5 5 7 9
7 7 7 7 9
9 9 9 9 9

We can also see that the side of the rectangle is going to be half of n+1, wheren
is the largest odd number added. (By ignoring the9’s in the example above, for
example we see a4×4 square, and4 is half of7+1, et cetera. Thus to add all the
odd numbers from1 to 1001, we’ll obtain a square of items with1002/2 = 501
on each side. Thus:

1 + 3 + 5 + · · · + 1001 = 5012.

This problem can also be solved in exactly the same way as we summed the first
two examples in this section, assuming that you are careful about counting the
number of dots in the length and width of the resulting rectangle.

3. Find a general formula for the sum1 + 3 + 5 + · · · + (2n + 1).

Using exactly the same argument as above, we’ll have a squarewith a side of
(2n + 1 + 1)/2 = (2n + 2)/2 = n + 1, so the sum is:

1 + 3 + 5 + · · · + (2n + 1) = (n + 1)2.

4. Try to draw a diagram with dots that demonstrates that:

(n + 1)3 = n3 + 3n2 + 3n + 1.

Hint: one nice solution is three-dimensional. What are the corresponding dia-
grams in two and one dimension?
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Figure 8:(n + 1)3 = n3 + 3n2 + 3n + 1

See Figure 8. Imagine that a large cube with all three sides equal in length to
n + 1 is sliced as in the figure, where the thin slices have width1. The original
cube has volume(n + 1)3, and it is cut into eight pieces. One is a cube of siden
with volumen3, three are plates having volumen ·n ·1 = n2 (since the thickness
is 1), three are rods with volumen · 1 · 1 = n, and there is a single small cube
of volume13 = 1. Adding the eight volumes together shows us that the total
volume is:

(n + 1)3 = n3 + 3n2 + 3n + 1.

5. How many

• corners (vertices) does a cube have? Answer: 8

• faces does a cube have? Answer: 6

• edges does a cube have? Answer: 12

• Same questions: how many vertices (V ), faces (F ), edges (E) has a tetra-
hedron?

Answer:V = 4, F = 4, E = 6.

• . . . has an octahedron?

Answer:V = 6, F = 8, E = 12.

• . . . has an Egyptian pyramid?
Answer (counting the base):V = 5, F = 5, E = 8.

• . . . has a cube with a corner chopped off?

Answer:V = 10, F = 7, E = 15.

• . . . have some other shapes?

Obviously, the answers depend on the solid, but assuming thesolid has no
holes, the answer has to satisfy:V −E + F = 2. This is known as Euler’s
Theorem.

6. Describe:

• intersections of a plane with a sphere

If the plane touches the sphere at a point, then there is a one-point intersec-
tion. Imagine touching a flat plate to a ball.
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If the plane cuts the sphere in more than one point, it must cuta circle.
The largest circle it can cut will occur when the plane passesthrough the
center of the sphere. If this occurs, the circle of intersection is called a
“great circle”. To help visualize this, think of the sphere as the earth, and
look at the lines of constant latitude (constant distance north or south of the
equator). All are circles and if you look at a globe of the earth, and look
straight down on the north pole, all the constant-latitude lines are circles.
Imagine a plane perpendicular to the axis of the north-southpole passing
through the earth. At every stage it will cut a circle of constant latitude.

A few great circles on the earth are the equator or the lines ofconstant
longitude, but there are many others. If you are forced to stay on the surface
of the earth (in a boat, for example) the shortest path is along a great circle.
To find that great circle, consider the origin and destination as two points
and find the plane passing through those two points and the center of the
earth. The path will be along the great circle which is the intersection of
that plane and the surface of the earth.

• intersections of two spheres

Figure 9: Two intersecting spheres

See Figure 9. As with the plane and the sphere, two spheres cantouch at
a point. If the intersection is larger than a point, it will bea circle (or, if
the two spheres are identical, it will be the entire sphere).To see why it is
a circle, imagine a line connecting the centers of the spheres, and slide a
plane along that line, perpendicular to it, until it passes through a common
point of the two spheres. The line will cut a circle on both spheres of
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identical size, so it must the the same circle on both of them.

• intersections of a cube with a plane

This is actually avery difficult visualization exercise. If the plane just
touches a vertex, you can get just that point. If the plane intersects an
edge, you can get a line segment the length of the edge. If the plane cuts
into the cube, you can get all sorts of odd-shaped polygons from triangles
to hexagons. In fact, it’s possible to get a perfect hexagon.

If the plane just cuts the tip of a vertex, you can get a triangle. A cut near
the vertex perpendicular to the axis connecting that vertexto the opposite
one on the cube will yield an equilateral triangle. If the plane is tilted,
many more triangles can be obtained, ranging from equilateral to very long,
skinny ones.

If you cut parallel to a face, you’ll obtain a perfect square.If you imagine
hanging the cube by a vertex and cutting half-way between thetop and
bottom vertices perpendicular to that vertex-vertex axis,that will make a
perfect hexagon. By tilting away from that axis, you’ll get pentagons.

7. When we draw a graph of an equation likey = 3x + 2, exactly what does the
graph mean? We often look at graphs of quadratic equations inparticular for
points where the curve (parabola, for quadratic equations)crosses thex-axis.
What does this mean?

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 10: Graph of(x2 + y2 − 25)(3x − 2y + 3)(4x2 − 3x + 2 − y) = 0

8. See Figure 10. We are trying to find the places where the product of three expres-
sions is zero. If a product of numbers is zero, then one or moreof those numbers
must be zero. So we will have the product equal to zero if any ofthe following
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Figure 11: Graph of(x2 + y2 − 25)(3x − 2y + 3)(4x2 − 3x + 2 − y) = 0

three equations is true:

x2 + y2 − 25 = 0

3x − 2y + 3 = 0

4x2 − 3x + 2 − y = 0

The first is just the equation of a circle of radius5 centered at the origin; the sec-
ond is the equation of a straight line, and the third is the equation of a parabola.
The figure shows all the solutions for all three.

Another way to visualize this is to imagine the surface of a three-dimensional
plot of:

z = (x2 + y2 − 25)(3x − 2y + 3)(4x2 − 3x + 2 − y).

This will be a complicated three-dimensional plot, but whatwe are interested
in is the intersection of this plot with the planez == 0. This is illustrated in
Figure 11.

9. See Figure 12. Begin with the small square of area1 near the upper left corner of
the figure. Then rectangles and squares having areas2, 4, 8, and so on, are added
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Figure 12: Adding1 + 2 + 4 + 8 + · · ·

alternately below and to the right of the original square. Thus, for example, the
sum1 + 2 + 4 + 8 is represented by a square in the upper right that is missing a
single tiny square at its upper left corner.

Assuming the little missing square were actually there, each rectangle or square
added doubles the previous area, so if there aren terms in:1+2+4+ · · ·+2n−1,
the sum of those terms will be2n − 1. The “−1” subtracts off the area of the
upper left corner that is missing.

From these observations, we can see that:

1 + 2 + 4 + 8 + · · · + 128 = 256 − 1 = 255,

and
1 + 2 + 4 + 8 + · · · + 2n = 2n+1 − 1.

10. This is based on the solution in Item 9. Note that every term in this series is
exactly3 times as big as the term in the series:

1 + 2 + 4 + 8 + · · · ,

so the sum will be3 times as large:

3 + 6 + 12 + 24 + · · · + 3 · 2n = 3(2n+1 − 1).

11. See Figure 13. In the figure, imagine that the area of the entire square is1. It
is successively divided, first into halves, then one of the halves is divided in half
making two quarters, one of the quarters is split in half making two eighths, et
cetera. At each stage of the calculation:

1/2

1/2 + 1/4

1/2 + 1/4 + 1/8

1/2 + 1/4 + 1/8 + 1/16

· · ·
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1/21/2

1/41/4

1/81/8

1/161/16
1/321/32

1/641/64

Figure 13: Adding1/2 + 1/4 + 1/8 + · · ·

if you look at a set of areas that corresponds to that, the remainder to complete the
entire square is simply a copy of the smallest rectangle/square that you obtained.
Thus:

1/2 + 1/4 + 1/8 + · · · + 1/256 = 1 − 1/256 = 255/256.

12. See Item 11 and Figure 13. Each additional term in the series:

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + · · ·

fits inside the large square of area one, but basically cuts the uncovered part in
half. Thus, as more and more terms are added, the uncovered part gets as tiny
as you want, so the area gets closer and closer to1, so it is reasonable to set the
infinite sum to1. This idea can be made rigorous mathematically (the theory of
limits), but this paper is more concerned with visualization, so we will not do so
here.

13. (Telescoping series) Find the finite and the infinte sum below (each term has the
form 1/(n(n + 1))):

1/6 + 1/12 + 1/20 + 1/30 + · · · 1/2550,

1/6 + 1/12 + 1/20 + 1/30 + · · · .

The key here is to note that:

1

n(n + 1)
=

1

n
− 1

n + 1
.

Thus1/6 = 1/2 − 1/3, 1/12 = 1/3− 1/4, 1/20 = 1/4 − 1/5 and so on. With
this observation, the first sum is equal to this:

(1/2 − 1/3) + (1/3 − 1/4) + (1/4 − 1/5) + · · · + (1/50 − 1/51).
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If we regroup, the sum “telescopes”, and is equal to1/2 − 1/51 = 49/102.

In the case of the infinite sum, the terms cancel all the way down, so the answer
is just1/2.

14. Hint: Here is a very interesting way to write:

S = 1p + 2p + 3p + · · · + np.

S = n(1p−0p)+(n−1)(2p−1p)+(n−2)(3p−2p)+ · · ·+(1)(np−(n−1)p).

To see this, just expand the terms and rearrange:

S = n ·1p−(n−1)1p +(n−1)2p−(n−2)2p + · · ·+2(n−1)p−(n−1)p +np.

The terms above almost cancel, and after cancellation, we obtain the correct
result for n.
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