HYPERBINARY NUMBERS PROOFS KEY

SAMUEL COSKEY, PAUL ELLIS, AND JAPHETH WOOD

§1. HYPERBINARY NUMBERS

Claim 1. $b(n) = b(2n + 1)$

Proof. Given a hyperbinary representation of n we can obtain a hyperbinary representation of $2n + 1$ by adding a final 1 to the right end. Conversely, any hyperbinary representation of $2n + 1$ necessarily has a 1 at its right end. Deleting this final 1 gives a hyperbinary representation of n. □

Claim 2. $b(2n) = b(n) + b(n - 1)$

Proof. Suppose we start with a representation of $2n$. Since $2n$ is even, the hyperbinary representation must end in a 0 or a 2. If it ends in a 0, then chopping off this last 0 results in a representation of n. If it ends in a 2, then chopping off this 2 has the effect of subtracting 2 then dividing by 2. Hence it yields a representation of $n - 1$. □

§2. CALKIN–WILF TREE

Claim 3. If a node is labelled $\frac{r}{s}$ and the node is a left child, its parent labelled $\frac{r}{s-r}$ If a node is labelled $\frac{r}{s}$ and it is right child, its parent labelled $\frac{r-s}{s}$.

Proof. The two expressions are simply the inverses of the left-child and right-child expressions given in the Calkin–Wilf tree rules. □

Claim 4. Every number in the tree is a reduced fraction

Proof. Suppose some node N is labelled $\frac{r}{s}$ and that r and s share a common factor. Let a be this common factor, so $a > 1$, and a divides both r and s. Furthermore, assume that this node N is at the highest possible level (least possible level index). Then the parent N' of N is either labelled $\frac{r-s}{s}$ or else $\frac{r}{s-r}$. But now a divides $r - s$ and a divides $s - r$, so N' is labelled with a fraction that is not in lowest terms. This contradicts that N was chosen to be at the highest possible level. □

Claim 5. Every positive rational number appears in the Calkin–Wilf tree.

Proof. Suppose the fraction $\frac{r}{s}$ is a fraction in lowest terms that does not appear in the tree. Furthermore, pick this fraction with the smallest possible sum $r + s$. Either $r < s$ or $s < r$. Then $\frac{r}{s}$ is either the child of $\frac{r}{s-r}$ or $\frac{r-s}{s}$. But by our assumption, since each of these has a sum smaller than $r + s$, each of these appears in the tree. Thus $\frac{r}{s}$ does too. □
Claim 6. No number appears more than once in the Calkin–Wilf tree.

Proof. Suppose the fraction \(\frac{r}{s} \) is a fraction in lowest terms that appears in the tree more than once. Furthermore, pick this fraction with the smallest possible sum \(r + s \). Again \(\frac{r}{s} \) is either the child of \(\frac{r-s}{s} \) or \(\frac{r}{r-s} \). But it is not the child of both, as the choice of parent is determined by whether \(r < s \) or \(s < r \). So each of these instances of \(\frac{r}{s} \) has the same parent. But then the parent of \(\frac{r}{s} \) is an example of a fraction that appears in the tree more than once, and it has a sum smaller than \(r + s \), a contradiction. □

§3. BRINGING THE TWO TOGETHER

Claim 7. The denominator of node \(n \) is the numerator of node \(n + 1 \).

Proof. Case I: We are looking at the left and right children of the same parent. In this case, if the parent is \(\frac{a}{b} \), then the denominator if the left child and the numerator of the right child are both defined to be \(r + s \).

Case II: We are looking at the end of one row followed by the beginning of the next row. In this case, the denominator of the end of a row and the numerator of the beginning of a row are both 1.

Case III: We are looking at the right child of parent \(\frac{a}{b} \) followed by the left child of parent \(\frac{c}{d} \). For example, look at the case in the tree of \(\frac{7}{3} \) followed by \(\frac{3}{8} \), whose parents are \(\frac{2}{3} = \frac{1}{3} \) and \(\frac{7}{8} = \frac{1}{2} \). But this example shows how the proof will work, too. We can inductively assume that the claim is true for fractions at the level of \(\frac{a}{b} \) and \(\frac{c}{d} \). In other words \(b = c \). Thus the right child of \(\frac{a}{b} \) has denominator \(b \), and the left child of \(\frac{c}{d} \) has numerator \(c = b \). This the theorem is true in this case, as well. □

Claim 8. The fraction label of node \(n \) has the form \(f(n) / f(n+1) \) for some sequence \(f(n) \).

Proof. This follows immediately from the previous claim. □

Claim 9. The sequence \(f(n) \) is exactly the same as the sequence \(b(n) \) explored earlier.

Proof. What is the left child of node \(n \)? The answer is always \(2n + 1 \), and this is a fun exercise on its own if there is time. This means the left child of the fraction labelled \(\frac{f(n)}{f(n+1)} \) is the fraction labelled \(\frac{f(2n+1)}{f(2n+2)} \). But then the definition of ‘left child’ tells us that \(f(2n+1) = f(n) \) and \(f(2n) = f(n) + f(n+1) \). Do these statements look familiar? They should, because these are the same statement that defined our hyperbinary sequence \(b(n) \)! □

SAMUEL COSKEY, BOISE STATE UNIVERSITY, BOISE MATH CIRCLE

PAUL ELLIS, MANHATTANVILLE COLLEGE, WESTCHESTER AREA MATH CIRCLE

JAPHETH WOOD, BARD COLLEGE, BARD MATH CIRCLE