Filter by:

Topics

Supporting materials

Strategies

Session Styles

Mathematical Practices

Collections

Math Sessions

Don’t see what you’re looking for? Check our legacy math sessions page.
For best results on mobile, use desktop view
Submit a Session

Chris Bolognese, Raj Shah
Is it possible to measure all possible integer lengths on a ruler without marking every integer on that ruler? This is an engaging and challenging problem for all. Beautiful mathematics can be revealed while delving deeper into this rich mathematical task.
Michelle Manes
A decade ago, while researching the expected value for lottery tickets in various states, a group of MIT students won millions of dollars in the Massachusetts $2 Cash Winfall drawing. Do you want to know how they did it? This teacher led activity starts with a lottery, explores expected value, and finally ties into finite projective geometries.
Catherine Pullin Lane, Lynne Pachnowski
The game of Tic-Tac-Toe has roots going back centuries. Grid-style game boards have been found in Ancient Egypt, during the Roman Empire, and in our current age on restaurant placemats. Multiple avenues of exploration are possible with this simple children's game. A related game called “Gobblet Gobblers” takes Tic-Tac-Toe to a whole new level!
Chris Bolognese, Emily Dennett
College students need to be matched with a roommate. They each make a list of who they prefer to room with. Given the preference lists for each individual, can we find a matching that is stable? That is, would any pair ask to change rooms because they would rather room together than with their current roommates? Explorations lead to new questions or new avenues to investigate using various mathematical methods including, but not limited to, combinatorics, graph theory, or matrices.
Gene Abrams
A Mad Veterinarian has created three animal transmogrifying machines… While grappling with the posed questions, players will explore a set of problems, figuring out how and if the machines can complete a given transformation. Connections can be made to invariants, abstract algebra, graph theory, and Leavitt path algebra.
Cheryl Grood
In the television show Futurama, Professor Farnsworth and Amy decide to try out their newly finished “Mind-Switcher” invention on themselves. When they try to switch back, they discover a key flaw in the machine’s design: it will not allow the same pair of bodies to be used in the machine more than once. Is there a way to restore their minds back to their original bodies?
Joshua Zucker
Imagine that all the numbers from 1 to 100 inclusive are written on the blackboard. At every stage, you are allowed to erase two numbers that appear on the board (let’s call the numbers you erased x and y) and in place of the two erased numbers, write the number x+y +xy. Repeat this operation until only a single number remains. What are the possible values for that remaining number?
Alicia Pakusch, Rachel Pellegrino
You want this year’s dance to be LIT! The dance committee has a goal of fundraising $3,500 through ticket sales. How many tickets do they need to sell? Developed as part of the Math Circles of Inquiry project, this module presents an engaging problem which will allow students to investigate how to graph and solve a system of inequalities.
Caitlin Colburn, Mary Losito
Developed as part of the Math Circles of Inquiry project, this session is a good introduction to the 8th grade or Algebra Math curriculum using inquiry based instruction. Every time the Supreme Court justices get together, everyone shakes hands with each other. How many total handshakes will take place at one gathering?
Amy Myers
A simplex lock is a type of combination door lock that involves pushing-in buttons. Given the set of rules for using a 5-button simplex lock, how many different combinations are there?